Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746241

ABSTRACT

The Zika virus (ZIKV), discovered in Africa in 1947, swiftly spread across continents, causing significant concern due to its recent association with microcephaly in newborns and Guillain-Barré syndrome in adults. Despite a decrease in prevalence, the potential for a resurgence remains, necessitating urgent therapeutic interventions. Like other flaviviruses, ZIKV presents promising drug targets within its replication machinery, notably the NS3 helicase (NS3 Hel ) protein, which plays critical roles in viral replication. However, a lack of structural information impedes the development of specific inhibitors targeting NS3 Hel . Here we applied high-throughput crystallographic fragment screening on ZIKV NS3 Hel , which yielded structures that reveal 3D binding poses of 46 fragments at multiple sites of the protein, including 11 unique fragments in the RNA-cleft site. These fragment structures provide templates for direct design of hit compounds and should thus assist the development of novel direct-acting antivirals against ZIKV and related flaviviruses, thus opening a promising avenue for combating future outbreaks.

2.
Bioorg Chem ; 142: 106960, 2024 01.
Article in English | MEDLINE | ID: mdl-37944368

ABSTRACT

Tuberculosis is one of the major causes of death worldwide; more than a million people die every year because of this infection. The constant emergency of Mycobacterium tuberculosis resistant strains against the most used treatments also contributes to the burden caused by this disease. Consequently, the development of new alternative therapies against this disease is constantly required. In recent years, only a few molecules have reached the market as new antituberculosis agents. The mycobacterial cell wall biosynthesis is for a longstanding considered an important target for drug development. Particularly, in M. tuberculosis, the peptidoglycan cross-links are predominantly formed by nonclassical bridges between the third residues of adjacent tetrapeptides. The responsible enzymes for these reactions are ld-transpeptidases (Ldts), for which M. tuberculosis has five paralogues. Although these enzymes are distinct from the penicillin-binding proteins (PBPs), they can also be inactivated by ß-lactam antibiotics, but since M. tuberculosis has a chromosomal ß-lactamase, most of the antibiotics of these classes can be degraded. Thus, to identify alternative scaffolds for the development of new antimicrobials against tuberculosis, we have integrated several fragment-based drug discovery techniques. Based on that, we identified and validated a number of small molecules that could be the starting point in the synthesis of more potent inhibitors against at least two Ldts from M. tuberculosis, LdtMt2 and LdtMt3. Eight identified molecules inhibited the Ldts activity in at least 20%, and three of them have antimycobacterial activity. The cell ultrastructural analysis suggested that one of the best compounds induced severe effects on the septum and cell wall morphologies, which corroborates our target-based approach to identifying new Ldts hits.


Subject(s)
Mycobacterium tuberculosis , Peptidyl Transferases , Tuberculosis , Humans , Peptidyl Transferases/chemistry , Peptidyl Transferases/metabolism , beta-Lactams/pharmacology , Anti-Bacterial Agents/pharmacology , Antitubercular Agents/pharmacology , Tuberculosis/microbiology
3.
J Org Chem ; 88(13): 8781-8790, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37272775

ABSTRACT

Reactions involving C(sp3)-H bonds of azaarenes have been widely studied in recent years as they allow direct functionalization of these N-heterocycles without the use of harsh reaction conditions. In this work, we describe the C(sp3)-H functionalization of 4-methylquinazolines and 1-benzylisoquinolines, employing α-substituted ß-nitrostyrenes catalyzed by inexpensive copper acetate. Under the optimized condition, 21 pyrrolo[1,2-c]quinazolines, as well as an imidazo[1,2-c]quinazoline and 4 pyrrolo[2,1-a]isoquinolines, were obtained in moderate to good yields. Furthermore, the biological activity of the pyrrolo[1,2-c]quinazolines was evaluated against Plasmodium falciparum, and promising results were obtained.


Subject(s)
Antimalarials , Quinazolines , Copper/pharmacology , Copper/chemistry , Isoquinolines/chemistry , Catalysis
4.
ACS Omega ; 8(25): 22603-22612, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37387790

ABSTRACT

There are very few small-molecule antivirals for SARS-CoV-2 that are either currently approved (or emergency authorized) in the US or globally, including remdesivir, molnupiravir, and paxlovid. The increasing number of SARS-CoV-2 variants that have appeared since the outbreak began over three years ago raises the need for continual development of updated vaccines and orally available antivirals in order to fully protect or treat the population. The viral main protease (Mpro) and the papain-like protease (PLpro) are key for viral replication; therefore, they represent valuable targets for antiviral therapy. We herein describe an in vitro screen performed using the 2560 compounds from the Microsource Spectrum library against Mpro and PLpro in an attempt to identify additional small-molecule hits that could be repurposed for SARS-CoV-2. We subsequently identified 2 hits for Mpro and 8 hits for PLpro. One of these hits was the quaternary ammonium compound cetylpyridinium chloride with dual activity (IC50 = 2.72 ± 0.09 µM for PLpro and IC50 = 7.25 ± 0.15 µM for Mpro). A second inhibitor of PLpro was the selective estrogen receptor modulator raloxifene (IC50 = 3.28 ± 0.29 µM for PLpro and IC50 = 42.8 ± 6.7 µM for Mpro). We additionally tested several kinase inhibitors and identified olmutinib (IC50 = 0.54 ± 0.04 µM), bosutinib (IC50 = 4.23 ± 0.28 µM), crizotinib (IC50 = 3.81 ± 0.04 µM), and dacominitinib (IC50 = IC50 3.33 ± 0.06 µM) as PLpro inhibitors for the first time. In some cases, these molecules have also been tested by others for antiviral activity for this virus, or we have used Calu-3 cells infected with SARS-CoV-2. The results suggest that approved drugs can be identified with promising activity against these proteases, and in several cases we or others have validated their antiviral activity. The additional identification of known kinase inhibitors as molecules targeting PLpro may provide new repurposing opportunities or starting points for chemical optimization.

5.
Nucleic Acids Res ; 51(10): 5255-5270, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37115000

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). The NSP15 endoribonuclease enzyme, known as NendoU, is highly conserved and plays a critical role in the ability of the virus to evade the immune system. NendoU is a promising target for the development of new antiviral drugs. However, the complexity of the enzyme's structure and kinetics, along with the broad range of recognition sequences and lack of structural complexes, hampers the development of inhibitors. Here, we performed enzymatic characterization of NendoU in its monomeric and hexameric form, showing that hexamers are allosteric enzymes with a positive cooperative index, and with no influence of manganese on enzymatic activity. Through combining cryo-electron microscopy at different pHs, X-ray crystallography and biochemical and structural analysis, we showed that NendoU can shift between open and closed forms, which probably correspond to active and inactive states, respectively. We also explored the possibility of NendoU assembling into larger supramolecular structures and proposed a mechanism for allosteric regulation. In addition, we conducted a large fragment screening campaign against NendoU and identified several new allosteric sites that could be targeted for the development of new inhibitors. Overall, our findings provide insights into the complex structure and function of NendoU and offer new opportunities for the development of inhibitors.


Subject(s)
SARS-CoV-2 , Humans , Allosteric Regulation , Amino Acid Sequence , COVID-19 , Cryoelectron Microscopy , Endoribonucleases/metabolism , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry
6.
Nat Commun ; 14(1): 1545, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941262

ABSTRACT

The main protease from SARS-CoV-2 (Mpro) is responsible for cleavage of the viral polyprotein. Mpro self-processing is called maturation, and it is crucial for enzyme dimerization and activity. Here we use C145S Mpro to study the structure and dynamics of N-terminal cleavage in solution. Native mass spectroscopy analysis shows that mixed oligomeric states are composed of cleaved and uncleaved particles, indicating that N-terminal processing is not critical for dimerization. A 3.5 Å cryo-EM structure provides details of Mpro N-terminal cleavage outside the constrains of crystal environment. We show that different classes of inhibitors shift the balance between oligomeric states. While non-covalent inhibitor MAT-POS-e194df51-1 prevents dimerization, the covalent inhibitor nirmatrelvir induces the conversion of monomers into dimers, even with intact N-termini. Our data indicates that the Mpro dimerization is triggered by induced fit due to covalent linkage during substrate processing rather than the N-terminal processing.


Subject(s)
Coronavirus 3C Proteases , SARS-CoV-2 , Antiviral Agents , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/chemistry
7.
Bioorg Med Chem ; 83: 117239, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36940609

ABSTRACT

Chikungunya virus (CHIKV) is the etiological agent of chikungunya fever, a (re)emerging arbovirus infection, that causes severe and often persistent arthritis, as well as representing a serious health concern worldwide for which no antivirals are currently available. Despite efforts over the last decade to identify and optimize new inhibitors or to reposition existing drugs, no compound has progressed to clinical trials for CHIKV and current prophylaxis is based on vector control, which has shown limited success in containing the virus. Our efforts to rectify this situation were initiated by screening 36 compounds using a replicon system and ultimately identified the natural product derivative 3-methyltoxoflavin with activity against CHIKV using a cell-based assay (EC50 200 nM, SI = 17 in Huh-7 cells). We have additionally screened 3-methyltoxoflavin against a panel of 17 viruses and showed that it only additionally demonstrated inhibition of the yellow fever virus (EC50 370 nM, SI = 3.2 in Huh-7 cells). We have also showed that 3-methyltoxoflavin has excellent in vitro human and mouse microsomal metabolic stability, good solubility and high Caco-2 permeability and it is not likely to be a P-glycoprotein substrate. In summary, we demonstrate that 3-methyltoxoflavin has activity against CHIKV, good in vitro absorption, distribution, metabolism and excretion (ADME) properties as well as good calculated physicochemical properties and may represent a valuable starting point for future optimization to develop inhibitors for this and other related viruses.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Humans , Mice , Antiviral Agents/chemistry , Caco-2 Cells , Chikungunya Fever/drug therapy , Chikungunya virus/physiology , Protein Disulfide-Isomerases/antagonists & inhibitors , Virus Replication/drug effects , Flavins/chemistry , Flavins/pharmacology
8.
J Biol Chem ; 299(3): 103004, 2023 03.
Article in English | MEDLINE | ID: mdl-36775130

ABSTRACT

SARS-CoV-2 is the causative agent of COVID-19. The main viral protease (Mpro) is an attractive target for antivirals. The clinically approved drug nirmatrelvir and the clinical candidate ensitrelvir have so far showed great potential for treatment of viral infection. However, the broad use of antivirals is often associated with resistance generation. Herein, we enzymatically characterized 14 naturally occurring Mpro polymorphisms that are close to the binding site of these antivirals. Nirmatrelvir retained its potency against most polymorphisms tested, while mutants G143S and Q189K were associated with diminished inhibition constants. For ensitrelvir, diminished inhibition constants were observed for polymorphisms M49I, G143S, and R188S, but not for Q189K, suggesting a distinct resistance profile between inhibitors. In addition, the crystal structures of selected polymorphisms revealed interactions that were critical for loss of potency. In conclusion, our data will assist the monitoring of potential resistant strains, support the design of combined therapy, as well as assist the development of the next generation of Mpro inhibitors.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Lactams , Leucine , Nitriles , Protease Inhibitors/pharmacology
9.
Pharmaceutics ; 15(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36839758

ABSTRACT

Recent studies have shown that the peptide [des-Cys11,Lys12,Lys13-(p-BthTX-I)2K] (p-Bth) is a p-BthTX-I analog that shows enhanced antimicrobial activity, stability and hemolytic activity, and is easy to obtain compared to the wild-type sequence. This molecule also inhibits SARS-CoV-2 viral infection in Vero cells, acting on SARS-CoV-2 PLpro enzymatic activity. Thus, the present study aimed to assess the effects of structural modifications to p-Bth, such as dimerization, dendrimerization and chirality, on the antibacterial activity and inhibitory properties of PLpro. The results showed that the dimerization or dendrimerization of p-Bth was essential for antibacterial activity, as the monomeric structure led to a total loss of, or significant reduction in, bacterial activities. The dimers and tetramers obtained using branched lysine proved to be prominent compounds with antibacterial activity against Gram-positive and Gram-negative bacteria. In addition, hemolysis rates were below 10% at the corresponding concentrations. Conversely, the inhibitory activity of the PLpro of SARS-CoV-2 was similar in the monomeric, dimeric and tetrameric forms of p-Bth. Our findings indicate the importance of the dimerization and dendrimerization of this important class of antimicrobial peptides, which shows great potential for antimicrobial and antiviral drug-discovery campaigns.

10.
Viruses ; 15(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36680231

ABSTRACT

Since late 2016, a yellow fever virus (YFV) variant carrying a set of nine amino acid variations has circulated in South America. Three of them were mapped on the methyltransferase (MTase) domain of viral NS5 protein. To assess whether these changes affected viral infectivity, we synthesized YFV carrying the MTase of circulating lineage as well as its isoform with the residues of the previous strains (NS5 K101R, NS5 V138I, and NS5 G173S). We observed a slight difference in viral growth properties and plaque phenotype between the two synthetic YFVs. However, the MTase polymorphisms associated with the Brazilian strain of YFV (2016-2019) confer more susceptibility to the IFN-I. In addition, in vitro MTase assay revealed that the interaction between the YFV MTase and the methyl donor molecule (SAM) is altered in the Brazilian MTase variant. Altogether, the results reported here describe that the MTase carrying the molecular signature of the Brazilian YFV circulating since 2016 might display a slight decrease in its catalytic activity but virtually no effect on viral fitness in the parameters comprised in this study. The most marked influence of these residues stands in the immune escape against the antiviral response mediated by IFN-I.


Subject(s)
Interferon Type I , Yellow fever virus , Yellow fever virus/physiology , Interferon Type I/genetics , Amino Acids , Immune Evasion , Brazil , Methyltransferases/metabolism , Viral Nonstructural Proteins/genetics
11.
Virus Res ; 324: 199029, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36565816

ABSTRACT

The Chikungunya virus (CHIKV) causes Chikungunya fever, a disease characterized by symptoms such as arthralgia/polyarthralgia. Currently, there are no antivirals approved against CHIKV, emphasizing the need to develop novel therapies. The imidazonaphthyridine compound (RO8191), an interferon-α (IFN-α) agonist, was reported as a potent inhibitor of HCV. Here RO8191 was investigated for its potential to inhibit CHIKV replication in vitro. RO8191 inhibited CHIKV infection in BHK-21 and Vero-E6 cells with a selectivity index (SI) of 12.3 and 37.3, respectively. Additionally, RO8191 was capable to protect cells against CHIKV infection, inhibit entry by virucidal activity, and strongly impair post-entry steps of viral replication. An effect of RO8191 on CHIKV replication was demonstrated in BHK-21 through type-1 IFN production mechanism and in Vero-E6 cells which has a defective type-1 IFN production, also suggesting a type-1 IFN independent mode of action. Molecular docking calculations demonstrated interactions of RO8191 with the CHIKV E proteins, corroborated by the ATR-FTIR assay, and with non-structural proteins, supported by the CHIKV-subgenomic replicon cells assay.


Subject(s)
Chikungunya Fever , Chikungunya virus , Interferon Type I , Animals , Chlorocebus aethiops , Humans , Chikungunya Fever/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Molecular Docking Simulation , Virus Replication , Vero Cells , Interferon Type I/pharmacology
12.
J Biol Inorg Chem ; 28(1): 101-115, 2023 02.
Article in English | MEDLINE | ID: mdl-36484824

ABSTRACT

Chikungunya virus (CHIKV) is the causative agent of chikungunya fever, a disease that can result in disability. Until now, there is no antiviral treatment against CHIKV, demonstrating that there is a need for development of new drugs. Studies have shown that thiosemicarbazones and their metal complexes possess biological activities, and their synthesis is simple, clean, versatile, and results in high yields. Here, we evaluated the mechanism of action (MOA) of a cobalt(III) thiosemicarbazone complex named [CoIII(L1)2]Cl based on its in vitro potent antiviral activity against CHIKV previously evaluated (80% of inhibition on replication). Furthermore, the complex has no toxicity in healthy cells, as confirmed by infecting BHK-21 cells with CHIKV-nanoluciferase in the presence of the compound, showing that [CoIII(L1)2]Cl inhibited CHIKV infection with the selective index of 3.26. [CoIII(L1)2]Cl presented a post-entry effect on viral replication, emphasized by the strong interaction of [CoIII(L1)2]Cl with CHIKV non-structural protein 4 (nsP4) in the microscale thermophoresis assay, suggesting a potential mode of action of this compound against CHIKV. Moreover, in silico analyses by molecular docking demonstrated potential interaction of [CoIII(L1)2]Cl with nsP4 through hydrogen bonds, hydrophobic and electrostatic interactions. The evaluation of ADME-Tox properties showed that [CoIII(L1)2]Cl presents appropriate lipophilicity, good human intestinal absorption, and has no toxicological effect as irritant, mutagenic, reproductive, and tumorigenic side effects.


Subject(s)
Chikungunya Fever , Chikungunya virus , Humans , Chikungunya Fever/drug therapy , Chikungunya Fever/metabolism , Chikungunya virus/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/pharmacology , Viral Nonstructural Proteins/therapeutic use , Cobalt/pharmacology , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
13.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36558945

ABSTRACT

Although the past epidemic of Zika virus (ZIKV) resulted in severe neurological consequences for infected infants and adults, there are still no approved drugs to treat ZIKV infection. In this study, we applied computational approaches to screen an in-house database of 77 natural and semi-synthetic compounds against ZIKV NS5 RNA-dependent RNA-polymerase (NS5 RdRp), an essential protein for viral RNA elongation during the replication process. For this purpose, we integrated computational approaches such as binding-site conservation, chemical space analysis and molecular docking. As a result, we prioritized nine virtual hits for experimental evaluation. Enzymatic assays confirmed that pedalitin and quercetin inhibited ZIKV NS5 RdRp with IC50 values of 4.1 and 0.5 µM, respectively. Moreover, pedalitin also displayed antiviral activity on ZIKV infection with an EC50 of 19.28 µM cell-based assays, with low toxicity in Vero cells (CC50 = 83.66 µM) and selectivity index of 4.34. These results demonstrate the potential of the natural compounds pedalitin and quercetin as candidates for structural optimization studies towards the discovery of new anti-ZIKV drug candidates.

14.
J Chem Inf Model ; 62(24): 6825-6843, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36239304

ABSTRACT

The Zika virus (ZIKV) is a neurotropic arbovirus considered a global threat to public health. Although there have been several efforts in drug discovery projects for ZIKV in recent years, there are still no antiviral drugs approved to date. Here, we describe the results of a global collaborative crowdsourced open science project, the OpenZika project, from IBM's World Community Grid (WCG), which integrates different computational and experimental strategies for advancing a drug candidate for ZIKV. Initially, molecular docking protocols were developed to identify potential inhibitors of ZIKV NS5 RNA-dependent RNA polymerase (NS5 RdRp), NS3 protease (NS2B-NS3pro), and NS3 helicase (NS3hel). Then, a machine learning (ML) model was built to distinguish active vs inactive compounds for the cytoprotective effect against ZIKV infection. We performed three independent target-based virtual screening campaigns (NS5 RdRp, NS2B-NS3pro, and NS3hel), followed by predictions by the ML model and other filters, and prioritized a total of 61 compounds for further testing in enzymatic and phenotypic assays. This yielded five non-nucleoside compounds which showed inhibitory activity against ZIKV NS5 RdRp in enzymatic assays (IC50 range from 0.61 to 17 µM). Two compounds thermally destabilized NS3hel and showed binding affinity in the micromolar range (Kd range from 9 to 35 µM). Moreover, the compounds LabMol-301 inhibited both NS5 RdRp and NS2B-NS3pro (IC50 of 0.8 and 7.4 µM, respectively) and LabMol-212 thermally destabilized the ZIKV NS3hel (Kd of 35 µM). Both also protected cells from death induced by ZIKV infection in in vitro cell-based assays. However, while eight compounds (including LabMol-301 and LabMol-212) showed a cytoprotective effect and prevented ZIKV-induced cell death, agreeing with our ML model for prediction of this cytoprotective effect, no compound showed a direct antiviral effect against ZIKV. Thus, the new scaffolds discovered here are promising hits for future structural optimization and for advancing the discovery of further drug candidates for ZIKV. Furthermore, this work has demonstrated the importance of the integration of computational and experimental approaches, as well as the potential of large-scale collaborative networks to advance drug discovery projects for neglected diseases and emerging viruses, despite the lack of available direct antiviral activity and cytoprotective effect data, that reflects on the assertiveness of the computational predictions. The importance of these efforts rests with the need to be prepared for future viral epidemic and pandemic outbreaks.


Subject(s)
Antiviral Agents , Protease Inhibitors , Zika Virus , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/chemistry , Zika Virus/drug effects , Zika Virus/enzymology , Zika Virus Infection/drug therapy
15.
Protein Pept Lett ; 29(12): 1088-1098, 2022.
Article in English | MEDLINE | ID: mdl-36177620

ABSTRACT

BACKGROUND: Fungal and parasitic diseases are global health problems, and the available treatments are becoming ineffective, mainly due to the emergence of resistant strains of pathogens. Furthermore, the drugs currently in use exhibit high toxicity and side effects. The scarcity of efficient treatments for fungal and parasitic diseases has motivated the search for new drug candidates, including antimicrobial peptides. The chemokine class RP1 peptide shows inhibitory activity against bacteria, viruses, cancer cells and parasites. In addition, the organometallic compound ferrocene showed antiparasitic activity. OBJECTIVE: Study aimed to assess the effect of conjugation of the RP1 peptide with ferrocene in terms of its structure, biological activity against fungi and parasites and toxicity. METHODS: Peptides and conjugates were synthesized using solid phase peptide synthesis (SPPS). The Fc-RP1 peptide showed antifungal and antimalarial activities with low toxicity in the U87 and HepG2 cell lines. RESULTS: The mechanism of action of these peptides, analyzed by flow cytometry in the fungus Cryptococcus neoformans, was through membrane permeabilization, with an emphasis on the Fc-RP1 peptide that presented the highest rate of PI-positive cell marking. CONCLUSION: In conclusion, ferrocene conjugated to antimicrobial peptide RP1 is an attractive biomolecule for drug discovery against fungal and parasitic diseases.


Subject(s)
Antimalarials , Metallocenes/pharmacology , Antifungal Agents/pharmacology , Antimicrobial Peptides
16.
Viruses ; 14(7)2022 06 21.
Article in English | MEDLINE | ID: mdl-35891332

ABSTRACT

Chikungunya virus (CHIKV) is the causative agent of chikungunya fever, a disabling disease that can cause long-term severe arthritis. Since the last large CHIKV outbreak in 2015, the reemergence of the virus represents a serious public health concern. The morbidity associated with viral infection emphasizes the need for the development of specific anti-CHIKV drugs. Herein, we describe the development and characterization of a CHIKV reporter replicon cell line and its use in replicon-based screenings. We tested 960 compounds from MMV/DNDi Open Box libraries and identified four candidates with interesting antiviral activities, which were confirmed in viral infection assays employing CHIKV-nanoluc and BHK-21 cells. The most noteworthy compound identified was itraconazole (ITZ), an orally available, safe, and cheap antifungal, that showed high selectivity indexes of >312 and >294 in both replicon-based and viral infection assays, respectively. The antiviral activity of this molecule has been described against positive-sense single stranded RNA viruses (+ssRNA) and was related to cholesterol metabolism that could affect the formation of the replication organelles. Although its precise mechanism of action against CHIKV still needs to be elucidated, our results demonstrate that ITZ is a potent inhibitor of the viral replication that could be repurposed as a broad-spectrum antiviral.


Subject(s)
Chikungunya Fever , Chikungunya virus , Viruses , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Antiviral Agents/therapeutic use , Chikungunya Fever/drug therapy , Chikungunya virus/genetics , Humans , Itraconazole/pharmacology , Luciferases , RNA, Viral/genetics , Virus Replication , Viruses/genetics
17.
Sci Rep ; 12(1): 10601, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732685

ABSTRACT

Chikungunya virus (CHIKV) is the causative agent of Chikungunya fever, an acute febrile and arthritogenic illness with no effective treatments available. The development of effective therapeutic strategies could be significantly accelerated with detailed knowledge of the molecular components behind CHIKV replication. However, drug discovery is hindered by our incomplete understanding of their main components. The RNA-dependent RNA-polymerase (nsP4-CHIKV) is considered the key enzyme of the CHIKV replication complex and a suitable target for antiviral therapy. Herein, the nsP4-CHIKV was extensively characterized through experimental and computational biophysical methods. In the search for new molecules against CHIKV, a compound designated LabMol-309 was identified as a strong ligand of the nsp4-CHIKV and mapped to bind to its active site. The antiviral activity of LabMol-309 was evaluated in cellular-based assays using a CHIKV replicon system and a reporter virus. In conclusion, this study highlights the biophysical features of nsP4-CHIKV and identifies a new compound as a promising antiviral agent against CHIKV infection.


Subject(s)
Chikungunya Fever , Chikungunya virus , Antiviral Agents/therapeutic use , Chikungunya virus/genetics , Humans , Ligands , RNA/metabolism , RNA-Dependent RNA Polymerase , Virus Replication
18.
ACS Infect Dis ; 8(6): 1147-1160, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35609344

ABSTRACT

There are currently relatively few small-molecule antiviral drugs that are either approved or emergency-approved for use against severe acute respiratory coronavirus 2 (SARS-CoV-2). One of these is remdesivir, which was originally repurposed from its use against Ebola. We evaluated three molecules we had previously identified computationally with antiviral activity against Ebola and Marburg and identified pyronaridine, which inhibited the SARS-CoV-2 replication in A549-ACE2 cells. The in vivo efficacy of pyronaridine has now been assessed in a K18-hACE transgenic mouse model of COVID-19. Pyronaridine treatment demonstrated a statistically significant reduction of viral load in the lungs of SARS-CoV-2-infected mice, reducing lung pathology, which was also associated with significant reduction in the levels of pro-inflammatory cytokines/chemokine and cell infiltration. Pyronaridine inhibited the viral PLpro activity in vitro (IC50 of 1.8 µM) without any effect on Mpro, indicating a possible molecular mechanism involved in its ability to inhibit SARS-CoV-2 replication. We have also generated several pyronaridine analogs to assist in understanding the structure activity relationship for PLpro inhibition. Our results indicate that pyronaridine is a potential therapeutic candidate for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Hemorrhagic Fever, Ebola , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hemorrhagic Fever, Ebola/drug therapy , Mice , Naphthyridines , SARS-CoV-2
19.
Bioorg Chem ; 120: 105649, 2022 03.
Article in English | MEDLINE | ID: mdl-35124513

ABSTRACT

Zika virus (ZIKV) is a dangerous human pathogen and no antiviral drugs have been approved to date. The chalcones are a group of small molecules that are found in a number of different plants, including Angelica keiskei Koidzumi, also known as ashitaba. To examine chalcone anti-ZIKV activity, three chalcones, 4-hydroxyderricin (4HD), xanthoangelol (XA), and xanthoangelol-E (XA-E), were purified from a methanol-ethyl acetate extract from A. keiskei. Molecular and ensemble docking predicted that these chalcones would establish multiple interactions with residues in the catalytic and allosteric sites of ZIKV NS2B-NS3 protease, and in the allosteric site of the NS5 RNA-dependent RNA-polymerase (RdRp). Machine learning models also predicted 4HD, XA and XA-E as potential anti-ZIKV inhibitors. Enzymatic and kinetic assays confirmed chalcone inhibition of the ZIKV NS2B-NS3 protease allosteric site with IC50s from 18 to 50 µM. Activity assays also revealed that XA, but not 4HD or XA-E, inhibited the allosteric site of the RdRp, with an IC50 of 6.9 µM. Finally, we tested these chalcones for their anti-viral activity in vitro with Vero cells. 4HD and XA-E displayed anti-ZIKV activity with EC50 values of 6.6 and 22.0 µM, respectively, while XA displayed relatively weak anti-ZIKV activity with whole cells. With their simple structures and relative ease of modification, the chalcones represent attractive candidates for hit-to-lead optimization in the search of new anti-ZIKV therapeutics.


Subject(s)
Angelica , Chalcone , Chalcones , Zika Virus Infection , Zika Virus , Angelica/chemistry , Animals , Chalcone/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , Chlorocebus aethiops , Humans , RNA , RNA-Dependent RNA Polymerase , Vero Cells , Virus Replication
20.
Nat Prod Res ; 36(15): 3887-3893, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33703954

ABSTRACT

Malaria is an infectious illness, affecting vulnerable populations in Third World countries. Inspired by natural products, indole alkaloids have been used as a nucleus to design new antimalarial drugs. So, eighteen oxindole derivatives, aza analogues were obtained with moderate to excellent yields. Also, the saturated derivatives of oxindole and aza derivatives via H2/Pd/C reduction were obtained in good yields, leading to racemic mixtures of each compound. Next, the inhibitory activity against P. falciparum of 18 compounds were tested, founding six compounds with IC50 < 20 µM. The most active of these compounds was 8c; however, their unsaturated derivative 7c was inactive. Then, a structure-activity relationship analysis was done, founding that focused LUMO lobe on the specific molecular zone is related to inhibitory activity against P. falciparum. Finally, we found a potential inhibition of lactate dehydrogenase by oxindole derivatives, using molecular docking virtual screening.


Subject(s)
Antimalarials , Antimalarials/pharmacology , Molecular Docking Simulation , Molecular Structure , Oxindoles/pharmacology , Plasmodium falciparum , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...